40 research outputs found

    Large-scale atmospheric circulation enhances the Mediterranean East-West tree growth contrast at rear-edge deciduous forests

    Get PDF
    Overlaid to a general reduction of European beech and sessile oak tree growth over the recent decades in the Mediterranean Basin, tree-ring records from western Mediterranean populations display a stronger growth decrease than eastern populations. We investigate here to what extent the impact of sustained atmospheric circulation patterns in summertime can explain the observed spatial patterns of tree growth. We use Canonical Correlation Analysis, a statistical method that identifies the coupled patterns that are optimally correlated between two multivariate data sets. A general change in growth trends, shifting from a general increase during the period 1950\ue2\u80\u931981 to a decrease during the last three decades (1982\ue2\u80\u932012), can be attributed to increasing summer temperatures, which exert a dominant and negative influence on growth in both tree species across sites. However, summer precipitation has gained importance for growth, coinciding with the intensification of the geographical polarity in climate conditions across the Mediterranean Basin. This intensification during the last three decades can be traced back to a strengthening of the Summer North Atlantic Oscillation (SNAO), which imparts an east-west dipole to summer climate in this region. Under predicted persistent stronger SNAO in the future, western populations would face harsher summer conditions than central and eastern rear-edge populations, due to decreasing precipitation and increasing temperatures in the western Mediterranean Basin. These results evidence the determinant role that changes in the atmospheric circulation patterns may play in the persistence of rear-edge temperate deciduous forests in the near future

    Spatio‐temporal patterns of tree growth as related to carbon isotope fractionation in European forests under changing climate

    Get PDF
    Aim To decipher Europe-wide spatiotemporal patterns of forest growth dynamics and their associations with carbon isotope fractionation processes inferred from tree rings as modulated by climate warming. Location Europe and North Africa (30‒70°N, 10°W‒35°E). Time period 1901‒2003. Major taxa studied Temperate and Euro-Siberian trees. Methods We characterize changes in the relationship between tree growth and carbon isotope fractionation over the 20th century using a European network consisting of 20 site chronologies. Using indexed tree-ring widths (TRWi), we assess shifts in the temporal coherence of radial growth across sites (synchrony) for five forest ecosystems (Atlantic, Boreal, cold continental, Mediterranean and temperate). We also examine whether TRWi shows variable coupling with leaf-level gas exchange, inferred from indexed carbon isotope discrimination of tree-ring cellulose (Δ13Ci). Results We find spatial autocorrelation for TRWi and Δ13Ci extending over up to 1,000 km among forest stands. However, growth synchrony is not uniform across Europe, but increases along a latitudinal gradient concurrent with decreasing temperature and evapotranspiration. Latitudinal relationships between TRWi and Δ13Ci (changing from negative to positive southwards) point to drought impairing carbon uptake via stomatal regulation for water saving occurring at forests below 60°N in continental Europe. A rise in forest growth synchrony over the 20th century together with increasingly positive relationships between TRWi and Δ13Ci indicate intensifying drought impacts on tree performance. These effects are noticeable in drought-prone biomes (Mediterranean, temperate and cold continental). Main conclusions At the turn of this century, convergence in growth synchrony across European forest ecosystems is coupled with coordinated warming-induced drought effects on leaf physiology and tree growth spreading northwards. Such a tendency towards exacerbated moisture-sensitive growth and physiology could override positive effects of enhanced leaf intercellular CO2 concentrations, possibly resulting in Europe-wide declines of forest carbon gain in the coming decades

    The College News, 1923-01-24, Vol. 09, No. 13

    Get PDF
    Bryn Mawr College student newspaper. Merged with The Haverford News in 1968 to form the Bi-college News (with various titles from 1968 on). Published weekly (except holidays) during the academic year

    Data Descriptor: A global multiproxy database for temperature reconstructions of the Common Era

    Get PDF
    Reproducible climate reconstructions of the Common Era (1 CE to present) are key to placing industrial-era warming into the context of natural climatic variability. Here we present a community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative. The database gathers 692 records from 648 locations, including all continental regions and major ocean basins. The records are from trees, ice, sediment, corals, speleothems, documentary evidence, and other archives. They range in length from 50 to 2000 years, with a median of 547 years, while temporal resolution ranges from biweekly to centennial. Nearly half of the proxy time series are significantly correlated with HadCRUT4.2 surface temperature over the period 1850-2014. Global temperature composites show a remarkable degree of coherence between high-and low-resolution archives, with broadly similar patterns across archive types, terrestrial versus marine locations, and screening criteria. The database is suited to investigations of global and regional temperature variability over the Common Era, and is shared in the Linked Paleo Data (LiPD) format, including serializations in Matlab, R and Python.(TABLE)Since the pioneering work of D'Arrigo and Jacoby1-3, as well as Mann et al. 4,5, temperature reconstructions of the Common Era have become a key component of climate assessments6-9. Such reconstructions depend strongly on the composition of the underlying network of climate proxies10, and it is therefore critical for the climate community to have access to a community-vetted, quality-controlled database of temperature-sensitive records stored in a self-describing format. The Past Global Changes (PAGES) 2k consortium, a self-organized, international group of experts, recently assembled such a database, and used it to reconstruct surface temperature over continental-scale regions11 (hereafter, ` PAGES2k-2013').This data descriptor presents version 2.0.0 of the PAGES2k proxy temperature database (Data Citation 1). It augments the PAGES2k-2013 collection of terrestrial records with marine records assembled by the Ocean2k working group at centennial12 and annual13 time scales. In addition to these previously published data compilations, this version includes substantially more records, extensive new metadata, and validation. Furthermore, the selection criteria for records included in this version are applied more uniformly and transparently across regions, resulting in a more cohesive data product.This data descriptor describes the contents of the database, the criteria for inclusion, and quantifies the relation of each record with instrumental temperature. In addition, the paleotemperature time series are summarized as composites to highlight the most salient decadal-to centennial-scale behaviour of the dataset and check mutual consistency between paleoclimate archives. We provide extensive Matlab code to probe the database-processing, filtering and aggregating it in various ways to investigate temperature variability over the Common Era. The unique approach to data stewardship and code-sharing employed here is designed to enable an unprecedented scale of investigation of the temperature history of the Common Era, by the scientific community and citizen-scientists alike

    Climate threats on growth of rear-edge European beech peripheral populations in Spain

    No full text
    European beech (Fagus sylvatica L.) forests in the Iberian Peninsula are a clear example of a temperate forest tree species at the rear edge of its large distribution area in Europe. The expected drier and warmer climate may alter tree growth and species distribution. Consequently, the peripheral populations will most likely be the most threatened ones. Four peripheral beech forests in the Iberian Peninsula were studied in order to assess the climate factors influencing tree growth for the last six decades. The analyses included an individual tree approach in order to detect not only the changes in the sensitivity to climate but also the potential size-mediated sensitivity to climate. Our results revealed a dominant influence of previous and current year summer on tree growth during the last six decades, although the analysis in two equally long periods unveiled changes and shifts in tree sensitivity to climate. The individual tree approach showed that those changes in tree response to climate are not size dependent in most of the cases. We observed a reduced negative effect of warmer winter temperatures at some sites and a generalized increased influence of previous year climatic conditions on current year tree growth. These results highlight the crucial role played by carryover effects and stored carbohydrates for future tree growth and species persistence

    Xylem adjustment of sessile oak at its southern distribution limits

    No full text
    Drought is a key limiting factor for tree growth in the Mediterranean Basin. However, the variability in acclimation via xylem traits is largely unknown. We studied tree growth and vessel features of Quercus petraea (Matt.) Lieb. in five marginal stands across southern Europe. Tree-ring width (TRW), mean earlywood vessel area (MVA) and number of earlywood vessels (NV) as well as theoretical hydraulic conductivity (Kh) chronologies were developed for the period 1963-2012. Summer drought signals were consistent among TRW chronologies; however, climatic responses of vessel features differed considerably among sites. At the three xeric sites, previous year's summer drought had a negative effect on MVA and a positive effect on NV. In contrast, at the two mesic sites, current year's spring drought negatively affected NV, while exerting a positive influence on MVA. In both cases, Kh was not altered by this xylem adjustment. All variables revealed identical east-west geographical patterns in growth and anatomical features. Sessile oak copes with drought in different ways at xeric sites and after unfavourable previous summer conditions more but smaller vessels are built, lowering vulnerability to cavitation, whereas at mesic sites, dry springs partly lead to tree-rings with wider but fewer vessels. The variability of vessel-related features displays a similar geographical dipole in the Mediterranean Basin previously described for tree growth by other studies. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email [email protected]

    Coexistence in the Mediterranean-Temperate transitional border Multi-century dynamics of a mixed old-growth forest under global change

    No full text
    Old-growth forests, particularly those located at the interface between different bioregions, are unevalu_x0002_able sources oflong-termvegetationdynamics andhistorical standresponse tonatural andanthropogenic disturbances. Although old-growth forests are scarce,the information gathered studying them may assist forest ecosystem restoration and management under forthcoming climate and land-use changes. We analysed how complementary dynamics of a mixed old-growth forest composed by temperate (Fagus sylvatica, Quercus petraea) and submediterranean (Quercus pyrenaica) tree species were driven in response to global changes in the lasttwo centuries. The old-growth forest, named El Hayedo de Montejo, is located at the interface between the Mediterranean and temperate bioregions in the centre of the Iberian Peninsula. The populations of temperate species growing in El Hayedo de Montejo (F. sylvatica and Q. petraea) are at the dry and warm edges of their natural distribution area in Europe, whereas the submediterranean species Q. pyrenaica is at the core of the distribution range. In order to analyse the long-term dynamics, we developed basal area increment and disturbance chronologies for each of the tree species under study. Furthermore, we assessed the climate influence on tree growth during the most recent decades. Our results reveal historical shifts in forest dominance (as reflected by growth) induced by changes in climate andforestmanagement betweentemperate andsub-Mediterraneanspecies. This wasparticularly noticeable for F. sylvatica and Q. pyrenaica the least and most drought-tolerant species, respectively. A reduction in growth of F. sylvatica unprecedented in the context of the last two hundred years was observed during the last decades concurrent with forest densification and marked changes in climate. Conversely, both oak species seem to be better suited to current environmental conditions as expressed by increasing growth rates

    Influence of climate drivers and the North Atlantic oscillation on beech growth at marginal sites across the mediterranean

    No full text
    <p>European beech Fagus sylvatica L. represents one of the most commercially and ecologically important forest tree species in Europe. The study of climate-growth relationships may provide relevant information to assist projections of future species' distribution as well as forest management strategies. In this study, 9 European beech stands were selected at the rear edges of the species' distribution across an east-west gradient in the Mediterranean Basin (MB).Most of the tree-ring chronologies reached back more than a century; however we investigated the common period 1950-2012 in order to avoid past intensive management activities at some sites. The influences of temperature and precipitation on tree growth as well as their geographical patterns were investigated. Furthermore, the influence of the dominant atmospheric circulation pattern, the North AtlanticOscillation (NAO), was also assessed. The results reveal that tree growth in stands located in the western MB are limited by the combined influences of summer temperature and precipitation while stands located in central and eastern MB are mainly limited by summer temperature and show consistent lag effects on growth. The dry conditions prevailing during positive phases of the winter NAO have exerted a significant negative influence at sites located in western and central MB for the last 6 decades. However, the significance of NAO influence has generally decreased from western to eastern MB during recent decades. The results also provide evidence for the existence of carry-over effects that may be essential for the persistence and survival of some of these marginal populations.</p
    corecore